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Evidence of Memory Observed in Relaxation process -
(memorizing how long super-capacitor is kept on charging) 
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A supercapacitor  (SC) kept to charge from a constant voltage       for time cTmV
then kept at open circuited condition- The self-discharge decay of OC voltage ocv (t)

remembers the history of its charging time cT

This is also observed in LAPONITE relaxation 

Ideal loss less capacitor (memory-less) does not have OC voltage droop depending
on charging time, here irrespective of history OC voltage retains at same value
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Evidence of Memory Observed in Relaxation
(remembering what type charging function one uses for SC) 

Step input pumps more charge that ramp input–for memory less case in both cases
charge is same



What is and what type of memory-in dead matter?

A dead matter are: dielectric, visco-elastic, Electric Double layer, Constant Phase 
Element (CPE), magnetic, electrostatic materials, liquid cooling etc. show memory 

Systems or processes responds to a stimulus-i.e. cause        gives some effect

Each process has characteristic response function          -a property of system.

We have system/process reacts as per causality principle we simply write as:
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We term the function         as memory kernel, and say cause         we take as rate of 
change of voltage            with effect          as current call          ; we have constituent 
equation as

h( )t
(1)v ( )t i ( )t

(1 )

0
i ( ) h ( ) v ( ) dt t t t t


   

Say take                          we get Classical Capacitor Law  1h( ) C ( )t t
(1)

1i( ) C v ( )t t

Convolution operation

x( )t
y( )t

Classically we will observe impulse function as current, when we apply a step 
input voltage to capacitor. The cause i.e. rate of change vanishes and so does our 
effect-and we see no current after the voltage change has vanished. 
This is Zero Memory Case

Derivation of causality is given in detailed notes



Zero-memory case laws 
(memory kernel as delta function) 
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These are all classical expressions of laws that we know



For a system if the effect lingers even if the cause has vanished, we say that the 
system/process relaxes with memory-i.e. say if the current in dielectric lingers after
the rate of change of voltage/electric field has vanished, 

or in a radioactive decay/growth we observe non exponential function, 

or we get non-Gaussian plume in diffusion etc.

-are called anomalous processes.

These processes are relaxing with memory. 

But what typeof memory is a good topic to study

Memory based relaxations- (the anomalous effects!) 



Experimental evidence a case of memory based relaxation in 
dielectric

log i( ) ; At

lo g ( ) , [ h ]t

At time zero a voltage of 100V is connected to a 0.47uF metalized paper dielectric 
capacitor; in log-log scales average slope is -0.86. Thus exponent of relaxation
current is non-integer (Note the current is not impulse function)

Current  vs Time 

IEEE Trans on Dielectrics and Insulation, 1,826. (1994), S. Westerlund, L.Ekstam



Types of memory kernels-that we are considering 
We have memory decaying with time
We will insert various decaying kernel in the equation 
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h ( ) C e , 0 , 0 ; C 0tt t    Decaying Exponential  
Non-Singular Kernel
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Exponential  Non-
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In this presentation we will not take all of them but will discuss few cases of above
apply in capacitors and radioactive decay/growth cases

There could be several other types of memory kernels
Derivation of laws with all these kernels  is given in detailed notes



Memory kernel as singular power-law in capacitor law 
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We used integral formula of Caputo Fractional Derivative, i.e.
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For zero memory case we have for            , the classical capacitor law i.e.
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Current for a step-voltage input for capacitor having singular 
power law memory kernel 

We have derived constitutive law for capacitor having singular power law kernel as

 ( )
0i ( ) = C v ( ) C v ( )C

tt t D t 
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This relaxation current is as singular power law is as per (UDL) Universal Dielectric 
Law of Curie-von-Schweidler
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Experimental Data
Simulated Model Data
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For a constant charging current the voltage across capacitor 
is not changing linearly proportional to time ! 
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Not usual linear rise for 
constant current 

Observed Non-linear charging voltage profile 
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Memory kernel as non-singular power-law function for 
capacitor law 
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Note that for unit step input voltage                    with                       the current we get
as  
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Derivation is given in detailed notes



For other memory kernel as non-singular function 

We use the same method as done in previous page by expanding the function
(1 )k t  as infinite series in the formula 
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and do manipulations to use multiple integration formula, and fractional integration
formulas to write various constituent laws as depicted next page

Detailed derivation is given in notes



Various capacitor laws memory based vis-à-vis zero memory 

Discrete & Continuous Dynamical Systems Series-S doi: 10.3934/dcdss.2020032



Recent experimental validation of q = c * v
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One experiment validating the formula q = c * v in simulation and experiment on 
CPE, EDLC, ideal capacitor 
(fractional capacitor) and ideal loss less capacitor

1-Hz

0.1-Hz

“Nonlinear charge-voltage relation in constant phase element”- Preprint submitted to Journal of The
Electrochemical Society – Communications Courtesy A S Elwakil et al.
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Radioactive decay/growth classical law with zero memory 
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The classical law is:

The above classical law is a zero-memory case depicted below



Radioactive decay/growth law with  singular power law 
memory kernel 
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Using fractional integration formula we get this 
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Monotonically decaying Mittag-Leffler function
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Oscillatory decaying Mittag-Leffler function
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Radioactive decay/growth law with non-singular kernel
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Various radioactive decay/growth laws memory based

Derivation is given in detailed notes



Gaussian
Plume

Non-Gaussian
Plume

Diffusion/wave equation with and without memory

a. The Gaussian Plume and Non-Gaussian Plume for classical memory-less 
diffusion vis-à-vis diffusion with memory

b. Pure traveling waves in a memory-less wave equations vis-à-vis diffused 
travelling waves for memory based wave equation
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( , )2 ( , ) C ; 0 1c x tC
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Time Fractional Diffuso-Wave  Equation (TFDWE)

(a) (b)

“http://arxiv:org/pdf/1004.2950.pdf M Wright function in fractional diffusion process: a tutorial survey; F
Mainrandi, A. Mura, G Pagnini

This TFDWE is for singular power law memory kernel



Comments 

Observations say that dead matter does have memory

In those memory based responses for a process or system, fractional calculus 
is useful to describe constituent laws

However the memory with singular power law decay as kernel, gives the 
constituent laws in close conjugation to classical (memory less) laws: where the 
integer order derivative (or integral) gets replaced by fractional counterpart!

To have singularity in the natural dynamics makes us uncomfortable-presently as 
it is difficult to visualize singularity

Mathematically possible to have non-singular memory kernel, & using those we get 
the laws which are having infinite sum of integration operations

This is interesting research work to establish natural phenomena  based on non-
singular memory kernel, and to have physical interpretability-for say impedance,
equivalent circuit representation etc.

So we are in dark if the nature follows singular or non-singular memory?

Please refer detailed notes given on this presentation-for detailed discussions derivations and references.

However scientists/engineers are working on this non-singular systems as recently
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